US009195778B2

a2 United States Patent

Crowthers et al.

US 9,195,778 B2
Nov. 24, 2015

(10) Patent No.:
(45) Date of Patent:

(54) SYSTEMS, METHODS, AND APPARATUS FOR
PREFETCHING NODE DATA FOR LINKED
DATA STRUCTURE TRAVERSAL

(71)

(72)

(73)

")

@

(22)

(65)

(1)

(52)

(58)

Applicant: Qualcomm Innovation Center, Inc.,

San Diego, CA (US)

Inventors: Lucas L. Crowthers, Raleigh, NC (US);
Kulanthaivel Palanichamy, San Diego,
CA (US); Shyama Prasad Mondal, San
Diego, CA (US); Subrato K. De, San
Diego, CA (US)

Assignee: Qualcomm Innvoation Center, Inc.,
San Diego, CA (US)

Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35
U.S.C. 154(b) by 504 days.

Appl. No.: 13/786,125

Filed: Mar. 5, 2013

Prior Publication Data

US 2014/0258340 A1 Sep. 11, 2014

Int. CL.

GO6F 17/30 (2006.01)

U.S. CL

CPC GO6F 17/30961 (2013.01); GOG6F 17/30908

Field of Classification Search

CPC
USPC

(2013.01)

GOGF 17/30908; GOGF 17/30961

707/792

See application file for complete search history.

(56) References Cited
U.S. PATENT DOCUMENTS

7,975,025 B1* 7/2011 Szabo ... GOGF 17/30902
709/203
8,180,763 B2* 5/2012 Freedman GOGF 17/30961
707/713
8,645,501 B2* 2/2014 Ghoshcc......... HO4L 61/1511
709/203

2003/0126116 Al 7/2003 Chen et al.
2007/0106848 Al* 5/2007 Krishnaiyer GOGF 9/383
711/137
2012/0136875 Al* 52012 Panc.cceeee. GOGF 17/3053
707/748
2012/0284372 Al* 112012 Ghosh HO4L 61/1511
709/219
2014/0053057 Al* 2/2014 Reshadi GOGF 17/2247
715/234

OTHER PUBLICATIONS

Article entitled “Prefetching J+-Tree: A Cache-Optimized Main
Memory Database Index Structure”, by Luan et al, dated Mar. 3,
2009.*

Article entitled “Efficient In-Memory Indexing with Generalized
Prefix Trees”, by Boehm et al., dated 2011.*

(Continued)

Primary Examiner — Mahesh Dwivedi
(74) Attorney, Agent, or Firm — Neugeboren O’Dowd PC

(57) ABSTRACT

Systems, methods, and apparatus are herein disclosed for
prefetching node data of a linked data structure into a proces-
sor’s cache so as to decrease linked data structure traversal
latency. In particular, as the linked data structure is created or
modified, forward and reverse prefetch nodes are identified
and links identifying locations of these nodes are written to
nodes that will be traversed N nodes prior to the prefetch
nodes. Once the linked data structure has been created, tra-
versals of the structure use the prefetch links to prefetch node
data into the processor cache, so that when traversal reaches
a node, that node’s data is read from processor cache rather
than from memory.

20 Claims, 9 Drawing Sheets

Memory

Source
406

Linked Data Structure

Cache

Nodes

Processor

Parent

First Child
Last Child

Next Sibling
Previous Sibling
Forward Prefetch

Reverse Prefefch
424

404

Linked Data Structure Creation and
Traversal System

Node Creation Module |

410

Traversal Module
420

Network
Interface

408

Parser Module

T

422
412

US 9,195,778 B2
Page 2

(56) References Cited Roth, et al., “Effective Jump-Pointer Prefetching for Linked Data
Structures,” ISCA *99m Proceedings of the 26th International Sym-

OTHER PUBLICATIONS posium on Computer Architecture, 1999, pp. 111-121.

Chen, et al., “Fractal Prefetching B+Trees: Optimizing Both Cache
and Disk Performance,” ACM SIGMOD, Jun. 4-6, 2002, Madison,
WI, 12 pages. * cited by examiner

U.S. Patent Nov. 24, 2015 Sheet 1 of 9 US 9,195,778 B2

FIG. 1

U.S. Patent Nov. 24, 2015 Sheet 2 of 9 US 9,195,778 B2

FIG. 2

U.S. Patent Nov. 24, 2015 Sheet 3 of 9 US 9,195,778 B2

FIG. 3

300

US 9,195,778 B2

Sheet 4 of 9

Nov. 24, 2015

U.S. Patent

v Ol

44
SINPOIN SM

0cv
3|NPOJA |eStanel |

(157
8|NPOIA UOIB8.ID) SPON

WoISAg |estanel |
pue Uoljesln ainonig Bjeq payul

¥0v

1ossa00.d

3|Npo Jasled

4%

747

R EFEREEN

4o)948id pJemio

Bujqis snoiasld

buligls 1xeN

pIyD 1se]

PIlYD 3sd14

1usJed

SOpPON

[r47%
aoel8U|
YIOMISN

90%
801n0g

2JNoNAS Bleq pPayuUIT

N
F

Alowsy

o
S
<

US 9,195,778 B2

Sheet 5 of 9

Nov. 24, 2015

U.S. Patent

G oOld

Jasmolg

suibug Buspusy

4% 80

SINPON

[BSIOABI] PUE UONEBIS 9911 WO (suibus noke| ©6:9) ainpo Jas.ied

909
200 oM

560G
sjuswo|g

pas.ied

019
83l NOd

918 2
ooeudyu| Aejdsig 20BLISIU| YJOMION

U.S. Patent Nov. 24, 2015 Sheet 6 of 9 US 9,195,778 B2

600

Determine N

START

Attach new node

602

Traverse back one
node?
604

Traverse one node in reverse
traversal order to 1% existing
node

1* existing node has
reverse prefetch link?

Traverse back one
node?
608

Traverse back one node in
traversal order to preceding
node

Jump to 2" existing node via
reverse prefetch link

612

Traverse one node in forward
/ traversal order to prefetch
node
616
H N NO
Assign prefetch links ave N nodes been
traversed in the reverse

618 direction?

FIG. 6

U.S. Patent

FIG. 7

Nov. 24, 2015 Sheet 7 of 9 US 9,195,778 B2
700
701 COMPUTER SYSTEM
720
PROCESSOR(S)
NETWORK
702
| CACHE (A K Wrereace - W
721
703 \
\ GRAPHICS
MEMORY — CONTROL
05— Rrom K| VIDEO INTERFAGE N DISPLAY
723 733
706 oos d 2
INPUT
—————————— 1 N wpuT INTERFACE K) DEVICUE(S)
|
STORAGE CONTROL ()
| 724 734\
_____ —— — — \
708 T
707 OUTPUT OUTPUT
\ C—| INTERRACE — DEVICE(S)
STORAGE
725 735
709 - OPERATING ™ ™~
SYSTEM > STORAGE DEVICE |——n| STORAGE
10 INTERFACE DEVICE(S)
] EXECs
-— 726 736
M pata ™~ ™~
—> STORAGE MEDIUM | — STORAGE
12 e INTERFACE MEDIUM
APPLICATIONS \/7

U.S. Patent Nov. 24, 2015 Sheet 8 of 9 US 9,195,778 B2

FIG. 8

302

U.S. Patent Nov. 24, 2015 Sheet 9 of 9 US 9,195,778 B2

(=)

®
®
G

900

US 9,195,778 B2

1

SYSTEMS, METHODS, AND APPARATUS FOR
PREFETCHING NODE DATA FOR LINKED
DATA STRUCTURE TRAVERSAL

BACKGROUND

1. Field

The present disclosed embodiments relate generally to
computing device communications, and more specifically to
apparatus and methods of rendering a webpage.

2. Background

Linked data structures include nodes distributed in
memory where each node includes at least one pointer (or
link) to another node that identifies a location of another node
in memory. Linked lists and tree type linked data structures
are two examples of linked data structures. Typically, linked
data structures are modified by changing the pointers or links
between nodes, while the nodes themselves remain in the
same physical location in memory.

Utilizing or modifying a linked data structure is performed
via a method called traversal, which involves the computa-
tional process of moving through the linked data structure
from node to node in a specified order (or traversal order) and
processing each node as it is traversed. Traversal order is
dictated by a traversal algorithm, which includes a set of
ordered rules specifying what type of node is to be traversed
next in the traversal order. For instance, one traversal algo-
rithm can, at each node, look for the following types of nodes
and traverse to the first of these nodes that exists: (1) first
child; (2) next sibling; and (3) closest ancestor’s sibling,
where children, siblings, and parents are defined via a con-
ceptual representation of a linked data structure such as FIG.
2. If none of these types can be found, then the traversal is
complete.

To better illustrate this, we can look at a webpage (FIG. 1)
and its underlying document object module (DOM) tree (FIG.
2), which illustrates one instance where a tree type linked data
structure is used in practice. FIG. 2 shows a conceptualization
of the DOM tree showing parent and child relationships
between nodes, but not showing the various links between
nodes. FIG. 1is a simplified webpage having 9 elements 102,
104,106,108,110,112,114, 116, 118 that are rendered from
aDOM treeillustrated in FIG. 2 having 9 nodes 202,204, 206,
208, 210, 212, 214, 216, 218. The nodes correspond to the
webpage elements as follows: 202—102; 204—104;
206—106; 208—108; 210—110; 212—112; 214—114,
216—116; and 218—118. A webpage element within another
element is said to be a ‘child’ of the containing element. For
instance, windows 104 and 110 are within window 102 and
are thus the nodes representing these elements are illustrated
as children 204, 210 of node 202 in the DOM tree. The
containing element (e.g., 202) is known as the ‘parent.” A
node may have multiple children, but only one parent. Nodes
with the same parent node are referred to as ‘siblings.” For
instance, nodes 204 and 210 are siblings, as are 214 and 216.
The node at the top of the tree (e.g., 202), which is the only
node without a parent, is referred to as the root node.

Typically, nodes in a linked data structure include a link to
one or more of the following nodes: parent, first child, previ-
ous child, next sibling, previous sibling. For example, node
204 is a parent to nodes 206 and 208. Nodes 206 and 208 are
siblings (although these links are not illustrated in the con-
ceptualization of the tree type linked data structure). Node
208 is a next sibling to node 206 and node 206 is a previous
sibling to node 208 (these links are also not illustrated).
Nodes 214 and 216 are children of node 206. Node 214 is a
first child of node 206 and node 216 is a last child of node 206.

10

20

25

40

45

50

2

InFIG. 2 one can see that the traversal algorithm described
above ((1) first child, (2) next sibling, (3) ancestor’s sibling)
leads to the following traversal order: 202,204, 206,214, 216,
208,218,210, 212. For instance, at node 204, the first child is
206 and so the algorithm traverses to node 206. At node 214,
there is no first child, but there is a next sibling, node 216. At
node 216 there is neither a first child, nor a next sibling, so the
algorithm traverses up a chain of parents (ancestors) until a
parent’s sibling is found. In this case, 208 is a sibling to 206,
which is the parent (an ancestor) of 216. As a further example,
for node 218, there is neither a first child, nor a next sibling,
so the algorithm traverses up the chain of parents until a
parent’s sibling is found; this happens to be node 210, which
is a sibling to node 204 which is a parent of the parent of node
218. Eventually, at node 212, neither a first child, a next
sibling, nor a sibling of any parent above node 212 exists, so
the algorithm has traversed all nodes in the linked data struc-
ture and thus traversal is complete. This exemplary traversal
order is unique to the illustrated tree type linked data structure
of FIGS. 2 and 8 and unique to the traversal algorithm
described earlier in this paragraph. In other embodiments,
different traversal orders can result from different types of
linked data structures and/or different traversal algorithms.

Traversing linked data structures is applicable in a variety
of circumstances, such as the rendering of webpages via
traversal of DOM trees, and updating of dynamic web pages
via traversal and manipulation of DOM trees. The DOM is a
convention used to represent and interact with objects in
HTML, XHTML, and XML documents. The DOM presents
web documents to a program such as a web browser, or to a
web developer during programming, as a tree hierarchy hav-
ing nodes and relationships between nodes. The DOM can
thus be used to analyze, manipulate, and render a web docu-
ment. The DOM is platform and language agnostic, enabling
this convention to be used across a wide range of platforms
and software languages.

To render a webpage, most web browsers download the
HTML document into memory, and parse it into DOM nodes
having relations to each other (e.g., parent, child, sibling),
where the nodes and their relations together form a DOM tree.
Once the DOM tree has been parsed, the web browser
traverses the DOM tree and renders the document (e.g., paint
to adisplay, convert to PDF, present on Braille system, or read
aloud via synthesized voice, to name a few non-limiting
examples).

When the DOM tree is traversed and data from each node
is processed, this data is first temporarily stored in a cache for
processing (e.g., a CPU cache). This cache has limited space,
and thus large and complex linked data structures (e.g., com-
plex web documents) cannot be buffered as a whole in the
cache—instead the linked data structure is temporarily stored
piecemeal in cache and processed piecemeal sometimes
delaying traversal and manipulation of the linked data struc-
ture. In the case of web documents this can mean increased
rendering times.

Current attempts to improve the speed of traversal involve
prefetching, where node data is loaded from memory into the
cache before it is needed. The processor is thus able to read
node data from cache rather than from memory, and thus
traversal latency is reduced.

Prefetch algorithms can either be carried out in hardware or
software. Hardware pretching often involves algorithms that
prefetch node data based on a previous traversal path—using
heuristics to predict likely accesses often based on recent
access patterns. On subsequent traversals, the algorithm can
often effectively predict where in memory to find nodes in
order to prefetch them into the cache.

US 9,195,778 B2

3

Implementing hardware prefetching allows arbitrary
prefetching problems to be solved quite effectively but at a
power cost and without being tailored to the prefetching—it
merely knows that it is accessing memory in a certain pattern.
The software on the other hand knows that it is performing
linked data structure traversal, so it can be tailored to more
efficiently perform this task (e.g., more efficiently guess
which node is to be traversed next).

Software-based prefetching has the potential to consume
less energy than hardware-based methods, however arbitrary
heuristics-based prefetching algorithms are typically not effi-
cient to implement in software and would consume more
processing time to train and predict prefetch locations than
the benefit that such prefetching would afford. Simple
prefetching algorithms have been implemented in software
given array type data structures, where any node implies a
node memory address for all other nodes in the array. In such
a data structure, logically adjacent nodes have adjacent
addresses. Thus, if nodes are accessed in order, the address of
the next node in the linked data structure (according to a given
traversal order) can be inferred since the pattern of node
addresses is consistent. However, this implied node memory
address does not exist for many types of data structures
including a typical DOM tree for a webpage. In these cases,
there is little pattern to the address of a next node relative to a
previous node in the traversal order.

There is therefore a need in the art for a method to traverse
large, complex, and nonlinear linked data structures (e.g.,
DOM trees) using low-power prefetching.

SUMMARY

Exemplary embodiments of the present invention that are
shown in the drawings are summarized below. These and
other embodiments are more fully described in the Detailed
Description section. Itis to be understood, however, that there
is no intention to limit the invention to the forms described in
this Summary of the Invention or in the Detailed Description.
One skilled in the art can recognize that there are numerous
modifications, equivalents and alternative constructions that
fall within the spirit and scope of the invention as expressed in
the claims.

Some embodiments of the disclosure may be characterized
as a linked data structure creation and traversal system com-
prising a node creation module, a traversal module, and a
write module. The node creation module can attach a new
node to the linked data structure. The traversal module can
traverse one node in a reverse traversal order from the new
node to a first existing node. The traversal module can also
jump to a second existing node, where the second existing
node can be located via a first reverse prefetch link of the first
existing node. The traversal module can additionally traverse
one node in a forward traversal order from the second existing
node to a prefetch node. The write module can write a second
reverse prefetch link, indicating a location of the prefetch
node, to the new node. The write module can also write a
forward prefetch link, indicating a location of the new node,
to the prefetch node.

Other embodiments of the disclosure may be characterized
as a method of assigning prefetch traversal links to nodes in a
linked data structure. The method may include determining a
prefetch node distance N. The method may further include
attaching a new node to the linked data structure. The method
may further include traversing the linked data structure one
node in a reverse traversal order to a first existing node. The
method may yet further include jumping to a second existing
node via a reverse prefetch link of the first existing node. The

30

40

45

4

method may further include traversing the linked data struc-
ture one node in a forward traversal order to a prefetch node.
The method may yet further include assigning a first reverse
prefetch link, referencing the prefetch node, to the new node.
The method may yet further include assigning a first forward
prefetch link, referencing the new node, to the prefetch node.

Yet further embodiments of the disclosure may be charac-
terized as a non-transitory, tangible computer readable stor-
age medium, encoded with processor readable instructions to
perform a method for assigning prefetch traversal links to
nodes in a linked data structure. The method can include
determining a prefetch node distance N and traversing the
linked data structure one node in a reverse traversal order to a
first existing node. The method can further include jumping to
a second existing node via a reverse prefetch link of the first
existing node. The method can yet further include traversing
the linked data structure one node in a forward traversal order
to a prefetch node. The method can further include assigning
a first reverse prefetch link, referencing the prefetch node, to
the new node and assigning a first forward prefetch link,
referencing the new node, to the prefetch node.

Still further embodiments of the disclosure may be char-
acterized as a system for assigning prefetch links to nodes in
a linked data structure in order to enhance traversal of the
linked data structure. The system can include a node creation
module that adds a new node to the linked data structure. The
system can further include a means for determining a prefetch
node distance N. The system can further include a means for
attaching a new node to the linked data structure. The system
can yet further include a means for traversing the linked data
structure one node in a reverse traversal order to a first exist-
ing node. The system can still further include a means for
jumping to a second existing node via a reverse prefetch link
of' the first existing node. The system can yet further include
a means for traversing the linked data structure one node in a
forward traversal order to a prefetch node. The system further
can include a means for assigning a first reverse prefetch link,
referencing the prefetch node, to the new node. The system
can additionally include a means for assigning a first forward
prefetch link, referencing the new node, to the prefetch node.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1illustrates a simplified webpage having a plurality of
nested elements;

FIG. 2 illustrates a simplified linked data structure visual-
ized in the form of a tree;

FIG. 3 illustrates another embodiment of a linked data
structure;

FIG. 4 illustrates a system for assigning prefetch links to
nodes during linked data structure creation and for using
those prefetch links to improve traversal efficiency;

FIG. 5 illustrates another system for assigning prefetch
links to nodes during linked data structure creation and for
using those prefetch links to improve traversal efficiency;

FIG. 6 illustrates a method of identifying and assigning
prefetch links to nodes during creation of a linked data struc-
ture;

FIG. 7 illustrates a diagrammatic representation of one
embodiment of a machine in the exemplary form of a com-
puter system;

FIG. 8 illustrates an alternative view of the linked data
structure of FIG. 3; and

FIG. 9 illustrates a doubly linked list or linear linked data
structure.

DETAILED DESCRIPTION

The word “exemplary” is used herein to mean “serving as
an example, instance, or illustration” Any embodiment

US 9,195,778 B2

5

described herein as “exemplary” is not necessarily to be con-
strued as preferred or advantageous over other embodiments.

The systems, methods, and apparatus herein disclosed
overcome the aforementioned challenges in the art by
enabling software-based linked data structure traversal that
uses prefetching. In particular, a linked data structure can be
created while simultaneously identifying and assigning
prefetch links to nodes as they are created. Prefetch links are
identified based on a number of nodes, N, or a prefetch dis-
tance, that is determined based on estimations of one or more
linked data structure traversal and node processing character-
istics. Prefetch links are then usable in subsequent traversals
to “jump” between nodes and to prefetch node data into
processor cache before the processor is ready to process the
node data. The process of identifying a prefetch node can
include the following operations: (1) attach a new node to the
linked data structure; (2) traverse one node in a reverse tra-
versal direction to a first existing node (assuming one exists);
(3) jump in the reverse traversal direction to a second existing
node via a reverse prefetch link of the second existing node;
(4) traverse one node in a forward traversal direction to the
prefetch node. Where all four of these operations cannot be
completed, a prefetch link may not be assignable. The for-
ward traversal direction and the reverse traversal direction are
opposite directions of the traversal order.

To demonstrate this process of identifying prefetch nodes,
reference is made to FIGS. 3 and 8, which show a particular
implementation of a tree type linked data structure (a doubly
linked list is another form of linked data structure as seen in
FIG. 9). FIG. 8 illustrates the links between nodes of the tree
type linked data structure, while FIG. 3 illustrates the con-
ceptual representation of a tree hierarchy (i.e., the parent and
child relationships between nodes). Although the linked data
structure includes 24 nodes, for the sake of brevity only a
portion of those nodes are illustrated and will be discussed.
For this illustration, a prefetch distance, N=4, is assumed, and
the traversal algorithm used in the Background is again fol-
lowed. In particular: (1) first child; (2) next sibling; and (3)
ancestor’s sibling. Given this traversal algorithm, which is
illustrative only, a traversal in the forward traversal order will
see node A traversed first, and node Z traversed last. Traversal
from Z toward A can be referred to as a reverse traversal order.
Because traversal can be forward or backward, there are simi-
larly “forward prefetch links” and “reverse prefetch links”
Once the prefetch links are assigned to nodes, the forward
prefetch links can be used during forward traversal, and the
reverse prefetch links can be used during reverse traversal.

In one embodiment, each node can include links to one or
more of the following: parent, first child, last child, next
sibling, previous sibling. A first child is a node in a list of
siblings which has no previous sibling associated with it. Link
302 (FIG. 8) represents two links: one is a link to the first child
of'node D, and one is link to the parent of node I. A last child
is a node in a list of siblings which has no next sibling
associated with it. Link 304 represents two links: one is a link
to the last child of node D, and one is a link to the parent of
node K. Children which are not first or last children cannot be
directly accessed from their parent node. Instead, they must
be accessed by first accessing the first or last child of the
parent node and then iteratively accessing next or previous
sibling links to reach the desired node. For instance, while J is
a child of D, J cannot be accessed from D, since J is not a
parent, first child, last child, next sibling, or previous sibling
to D. Viewed another way, link 306 represents a link from J to
D, but not vice versa. To reach J from D, the first child link
from D could be followed and then the next sibling link of I

10

15

20

25

30

35

40

45

50

55

60

65

6

(although other paths are also possible). As for siblings, J is a
next sibling to I, and J is a previous sibling to K.

The linked data structure of FIG. 8 shows the following
links: parents, first children, last children, next siblings, and
previous siblings. For instance, node B shows a parent link to
node A, a next sibling link to node C, a first child link to node
D, and a last child link to node E. As another example, D
shows a parent link to B, a next sibling link to E, a first child
link to I, and a last child link to K. D does not have a link to I,
although J has a parent link to D.

Each node can also include a forward prefetch link and
reverse prefetch link Exemplary links can be seen in Table 1
for the linked data structure of FIGS. 2 and 8, given the above
traversal algorithm, and N=4. For the sake of brevity, only
nodes A, B, D, I, P, Q, R, and W are shown in Table 1 and
discussed below.

TABLE 1
Traversal First Last Next Previous Forward Reverse
Order Parent Child Child Sibling Sibling PrefetchPrefetch
A — B C — — P —
B A D E C — Q —
D B I K E — R —
I D P R 7 — w —
P I — — Q — — A
Q I — — R P — B
R I w — — Q — D
w R — — — — — I

The forward prefetch node of A, for example, is P, four
nodes ahead of A. Similarly, the reverse prefetch of R is D,
four nodes in the reverse traversal order from R. During
traversal, while node B is being processed, the method can
“jump” to node Q via the forward prefetch link of node B, and
prefetch node Q’s data into the processor cache. Similarly, for
a reverse traversal, while node R is being processed, the
algorithm can jump to node D via the reverse prefetch link of
node R, and prefetch node D’s data into the processor cache.

For the purposes of this disclosure, traversing refers to
movement between adjacent nodes in a traversal order (e.g., B
to D or W to J), while jumping refers to movement between
non-adjacent nodes in the traversal order (e.g., Bto I or W to
K). Note that in some cases, adjacent nodes in the traversal
order are not adjacent nodes in the linked data structure (e.g.,
W to J). At the same time, some non-adjacent nodes in the
traversal order are adjacent nodes in the linked data structure
(e.g., J and I are non-adjacent in the traversal order yet adja-
cent in the linked data structure). For instance, J and I are
non-adjacent in the traversal order yet adjacent in the linked
data structure. J and I are adjacent in the linked data structure
because there is a next sibling link from I to J and a previous
sibling link from J to 1. The ability to jump becomes particu-
larly useful as N increases. This is because the same number
of operations are required to identify a prefetch link regard-
less as to how large N becomes—namely, a one-node tra-
versal, a jump, and a one-node traversal. Thus, the time
required to identify a prefetch node is the same whether N=4
or 40, for example.

The generalized method described above is further detailed
in FIG. 6 and will be described as applied to the exemplary
linked data structure as illustrated in FIG. 8. Initially, a
prefetch distance N is determined (Block 601), for instance as
afunction of node traversal latency or other linked data struc-
ture traversal and node processing characteristics. A new
node is then attached to the linked data structure (Block 602).
In this first iteration, node A is the new node. After A is

US 9,195,778 B2

7

created, the method 600 determines if it is possible to traverse
one node in the reverse traversal order (Decision 604).

Unable to find a previous node to A, the method 600 moves
on to creation of the next node, node B (Block 602) in a
second iteration. The method 600 attaches node B to the
linked data structure (Block 602) and then determines
whether a traversal of one node in the reverse traversal order
fromnode Bis possible (Decision 604). In this case it is, so the
method 600 traverses one node in the reverse traversal order
to node A (Block 606), also known as a first existing node.
The method 600 then determines if node A, the first existing
node, has a reverse prefetch link (Decision 608). Node A does
not, so the method 600 determines if it is possible to traverse
one node further in the reverse traversal direction (Decision
610). This is not possible with node A, so the method 600
loops back to attachment of a new node for a third iteration
(Block 602).

Node D is attached (Block 602) and then the method 600
determines if it is possible to traverse back one node from
node D (Decision 604). It is possible, so the method 600
traverses one node in the reverse traversal order to node B,
which is the first existing node for this iteration (Block 606).
The method 600 then determines if node B has a reverse
prefetch link (Decision 608), and since it does not, the method
600 determines if it is possible to traverse back one node
(Decision 610). This is possible, so the method 600 traverses
back one node in the reverse traversal order to node A, a
preceding node for this iteration (Block 614). If N (e.g., here
N=4) nodes have been traversed in the reverse traversal order
(e.g., 4 instances of Block 614), then the prefetch node has
been reached (Block 620) and prefetch links can be assigned
(Block 618). However, for N=4, and given that the new node
is D, N nodes have not been traversed in the reverse traversal
order and so the method 600 again determines if reverse
traversal one node from node A is possible (Decision 610). It
is not, so this third iteration of method 600 ends, and a new
node is attached (Block 602) in a fourth iteration.

The new node is node 1. Reverse traversal by/of one node is
possible (Decision 604), so the method 600 traverses one
node back to node D (Block 606) and finds that node D does
not have a reverse prefetch link (Decision 608). The method
600 then traverses back one node at a time (Block 614 along
with Decisions 620 and 610) until it reaches node A and is
unable to traverse in the reverse traversal order any further.
This ends the fourth iteration of the method 600 for new node
L

New node P is then attached to the linked data structure 300
(Block 602). Traversal back to node I is possible (Decision
604), so the method 600 traverses back to node I (Block 606),
and determines if node I has a prefetch link (Block 608). It
does not, so the method 600 again traverses in the reverse
traversal order one node at a time (Decision 610, Block 614,
Decision 620) and eventually reaches node A having tra-
versed 4 nodes (or N nodes) in the reverse traversal order
(Decision 620). Because N nodes have been traversed in the
reverse traversal order (Decision 620), node A is identified as
the prefetch node to node P, and prefetch links to nodes P and
A can be assigned to nodes A and P, respectively (Block 618).
This ends the fifth iteration of method 600 where the new
node is node P.

New node Q is then attached to the linked data structure
(Block 602), the method 600 traverses back to node P (Deci-
sion 604 and Block 606), and since areverse prefetch link was
assigned to node P in the fifth iteration, a reverse prefetch link
is found to existin node P (Decision 608). So, the method 600
jumps from node P to node A, a second existing node, using
the reverse prefetch link of node P (Block 612). The method

10

15

20

25

30

35

40

45

50

55

60

65

8

600 then traverses one node in the forward traversal order to
the prefetch node of node Q—node B (Block 616). When
method 600 reaches this point it can identify node B as the
prefetch node to node Q, and assign prefetch links to nodes Q
and B. In particular, a forward prefetch link to Q is assigned
to B and a reverse prefetch link to B is assigned to Q. This
sixth iteration for new node Q thus comes to an end.

All subsequent iterations in this example will appear
almost identical to the iteration for node Q—the method 600
will pass through Block 602, Decision 604, Block 606, Deci-
sion 608, Block 612, Block 616, and Block 618 for each
iteration of a new node being attached to the linked data
structure 300.

It can be seen that once prefetch links begin to be assigned
to nodes, the process of identifying prefetch links becomes
much quicker since a new node can use the reverse prefetch
link of the preceding node to ‘jump’ to the node preceding the
prefetch node. In this way, the method 600 need not traverse
back N nodes, one node at a time, to reach the prefetch node.
The method 600 therefore often involves two traversals and
one jump, and these same three steps will be performed
regardless as to the magnitude of the prefetch distance N.

Preferably the order of node attachment matches that of
any given traversal order. This can enhance performance and
also help to avoid prefetch links that point to other than the
prefetch node. The exemplary traversal algorithm discussed
above matches a construction order for XML/HTML docu-
ments that are linearly parsed from start to finish.

The prefetch distance N can be determined based on esti-
mations of one or more linked data structure traversal and
node processing characteristics. For instance, in one embodi-
ment, N can be calculated based on a combination (e.g.,
weighted average) of the following: (1) an average time that it
would take to traverse to the N node; and (2) an average time
that it would take to prefetch the node data from memory into
processor cache. In one embodiment, N can be based on the
longer of (1) and (2). In one embodiment, N can be based on
either (1) or (2) rather than a combination of the two. The
average time for both factors can, in an embodiment, be a
function of processor cycles. In one embodiment, N is 7
nodes.

In another embodiment, N can be empirically derived. For
instance, a traversal algorithm can be executed on a sample
document and timing performance for various values of N can
be recorded. N can be selected based on various metrics such
as speed, performance, best absolute worst-case, best abso-
lute best-case, etc.

The traversal operations (e.g., Blocks 606, 614, 616) each
involve a traversal from one node to an adjacent node in the
traversal order. However, since the traversal order sometimes
includes movement between non-adjacent nodes in the linked
data structure, each traversal of a single node can include
accessing intermediary nodes in order to find a linked path to
the next node or the previous node in the traversal order. For
instance, while J is the next node relative to W in the traversal
order, to reach J via the exemplary traversal order, the method
600 accesses nodes R, then I, and then J to perform the
traversal of a single node in the traversal order from node W
to node J.

It should be noted again that the illustrated traversal order,
and the traversal algorithm leading to this order, show one of
many examples, and are not intended to be the sole traversal
order that can be implemented. Instead, the terms forward and
reverse traversal order apply generally to any traversal order
implemented. Furthermore, the structure of the illustrated
linked data structure 300 is also merely illustrative, and the
systems and methods herein described apply equally well to

US 9,195,778 B2

9

any of a variety of different linked data structures. The
method steps illustrated in FIG. 6, in some embodiments, can
be interchanged without departing from the scope of the
invention. Furthermore, alternative embodiments can include
different links and/or different types of links.

For XML/HTML, first and last children are determined by
location in a document (e.g., first child is the first child
encountered in the document after the beginning of the parent
element and a last child is the last child encountered before an
end of the parent element). Yet, what is deemed a first and last
child will depend on the particular data structure.

Additionally, the linked data structure should be built
appropriately so that elements are represented in the order in
which they appear in the document. Other data representa-
tions and parsers may behave differently than exemplified
above, and the meaning of first and last child or sibling links,
or any other type of link, may be defined by the given imple-
mentation and may vary from embodiment to embodiment.

FIG. 4 illustrates a system 400 for assigning prefetch links
to nodes during linked data structure creation and for using
those prefetch links to improve traversal efficiency. In this
embodiment, the system 400 includes a network interface 426
providing source data 406, downloaded from a remote web
server, or other remote data source, that can be parsed by a
parser module 408 and then formed into a linked data struc-
ture 410 by a linked data structure creation and traversal
system 412. The linked data structure creation and traversal
system 412 can identify prefetch nodes while creating the
linked data structure 410, and assign prefetch links to nodes
424 as the nodes are created and attached to the linked data
structure 410. The same can also be performed when the
linked data structure 410 is updated or modified.

The linked data structure creation and traversal system 412
can include a node creation module 418, a traversal module
420, and a write module 422. These modules can be embodied
in hardware, software, firmware, or a combination of these.
The node creation module can create nodes 424 and add them
to the linked data structure 410. The traversal module 420 can
identify prefetch links as the nodes 424 are created or modi-
fied, and later use the prefetch links to more efficiently
traverse the linked data structure 410 on subsequent travers-
als. The write module 422 can assign or write the prefetch
links to nodes 424 as the nodes 424 are created or modified.
The linked data structure 410 can include a plurality of nodes
424 and each of the nodes 424 can include one or more of the
following links: parent, first child, last child, next sibling,
previous sibling, forward prefetch, reverse prefetch.

To identify prefetch nodes, the traversal module 420 per-
forms a one-node traversal in the reverse traversal order, a
jump based on a prefetch link of a preceding node, and a
one-node traversal in the forward traversal order. These three
steps can be carried out starting from each new node as each
new node is created by the node creation module 418. In more
detail, these three steps involve the traversal module 420
traversing the linked data structure 410 one node in a reverse
traversal order to a first existing node from a new node (if
possible). In some cases, a previous node does not exist, such
as in the case of node A in FIG. 3. The traversal module 420
then reads a reverse prefetch link of the first existing node (if
one exists) and follows the link to a reverse prefetch node of
the first existing node, which can be called a second existing
node. Some nodes will not have a prefetch link (e.g., nodes A,
B, D, and I in the example), but if there is one, then the
traversal module 420 can “jump” to a second existing node
using a location indicated by the reverse prefetch link. For

10

15

20

25

30

35

40

45

50

55

60

65

10

example, node A is the second existing node when node P is
the new node and assuming the previously discussed traversal
order.

The traversal module 420 can then traverse one node in the
forward traversal direction from the second existing node to
the prefetch node. Once the traversal module 420 has reached
and located the prefetch node, the write module 422 can write
a reverse prefetch link, indicating a location of the prefetch
node, to the new node. The write module 422 also writes a
forward prefetch link, indicating a location of the new node,
to a forward prefetch field of the prefetch node. These opera-
tions continue until all nodes in the linked data structure are
created.

During subsequent traversals, the linked data structure cre-
ation and traversal system 412 can use prefetch links that it
assigned to the nodes 424 to prefetch node data into a cache
414 of a processor 404 before the processor 404 is ready to
process a given node. This prefetching helps the processor
404 to operate more efficiently since it can read prefetched
data from its cache 414 faster than it can read node data from
the memory 402.

As an example of prefetching during traversal in the for-
ward traversal order, the processor 404 may process a first
node’s data while the processor’s memory interface—as
directed by the linked data structure creation and traversal
system 412—prefetches data for a second node from the
memory 402 into the processor’s 404 cache 414. Although the
linked data structure creation and traversal system 412 can
direct or suggest that the processor’s memory interface
prefetch data for the second node, the processor 404 has
ultimate control over whether it prefetches the data or not.
The location of the second node’s data can be indicated by a
forward prefetch link of the first node. In other words, the
processor 404 processes a node’s data while the linked data
structure creation and traversal system 412 prefetches node
data for a node N nodes ahead.

As noted above, each node can include one or more of the
following links: parent, first child, last child, next sibling, and
previous sibling. In some embodiments, a node may include
data fields for each of these five possible links. Further, a
value may be written to one or more of these fields, such that
some nodes may have values for the first child and last child
links, while another merely has a value for the parent link.

In some cases, the value assigned to a field may be a valid
but “nonideal” link, such as a link to an existing node that is
other than the correct node. For instance, while] is the next
sibling to I, I may have a link written to its next sibling field
that points to node E. Other values assigned to fields may be
ideal values since they point to the correct node. A field can be
empty or filled with a value that indicates an empty field (e.g.,
a“0”or NULL in C/C++). In some cases, one of the nodes 424
can include all of the links (parent, first child, last child, next
sibling, previous sibling), thus in many cases, a node will only
have some of these links populated. For instance, given lists,
outlines, or forums, many nodes will have all their links
populated. Prefetch links can sometimes be “invalid links”
meaning that they point to a node other than the prefetch node
or do not point to a node at all.

The linked data structure 410 is illustrated as being sepa-
rate from the memory 402 and the processor 404. However,
one of skill in the art will recognize that, in an embodiment,
the linked data structure creation and traversal system 412 can
reside on the memory 402 and/or run on the processor 404.

FIG. 5 illustrates another system for assigning prefetch
links to nodes during linked data structure creation and for
using those prefetch links to improve traversal efficiency.
This embodiment is implemented in a web browser 500 hav-

US 9,195,778 B2

11

ing a rendering engine 502 configured to receive webpage
data, process the data into a DOM tree, and rendering the
DOM tree (e.g., paint to a display, convert to PDF, present on
Braille system, or read aloud via synthesized voice, to name a
few non-limiting examples). Web documents, such as a web
page, are downloaded via a network interface 514. The web
doc 506 is then stored in a memory 504 of a browser 500. The
browser 500 can include a rendering engine 502 that is
responsible for rendering the web doc (e.g., a webpage). A
parser module 508, such as a layout engine, can parse the web
doc 506 into a plurality of parsed elements 509. A DOM tree
creation and traversal module 512 can then create a DOM tree
510 from the plurality of parsed elements 509. The DOM tree
creation and traversal module 512 can identify prefetch nodes
and assign prefetch links to nodes as they are created and
attached to the DOM tree 510.

Once the DOM tree 510 has been created, the DOM tree
creation and traversal module 512 can traverse the DOM tree
510 and provide data to the display interface 516 for display-
ing the webpage on a display. This traversal can be performed
with the help of prefetching as described with reference to the
method 600. In particular, as the DOM tree creation and
traversal module 512 traverses a node of the DOM tree 510 in
a forward traversal direction, it can read a forward prefetch
link of the node and use the forward prefetch link found in the
node to prefetch node data to a processor cache (not illus-
trated) before the processor is ready to process the node data.

Updates to the webpage or dynamic data may subsequently
arrive via the network interface 514, be stored in the memory
504, parsed by the parser module 508, and used by the DOM
tree creation and traversal module 512 to update the DOM
tree 510. During such updates, the DOM tree 510 is traversed,
and such traversal can be expedited via use of the prefetch
links. Furthermore, during and after updating of the DOM
tree 510, the DOM tree creation and traversal module 512 can
update appropriate prefetch links in the nodes to account for
the changes to the DOM tree 510.

The memory 504 may be a portion of memory (e.g., RAM)
that the rendering engine 502 is allocated by an operating
system. The parser module 508 and the DOM tree creation
and traversal module 512 may reside on this same memory
504, or a separate region of system memory.

The exemplary systems and methods described herein have
been described for embodiments where a linked data struc-
ture is created in the same order as the traversal order. In other
words, a next node attached to a linked data structure is a next
node in a traversal order of the completed linked data struc-
ture. The exemplary systems and methods described herein
have also often been described for embodiments where the
linked data structure is a tree structure. However, and as seen
in the doubly linked list or linear type linked data structure of
FIG. 9, the herein described systems and methods are not
limited to tree type linked data structures, but rather can be
applied to any type of linked data structure with reversible
traversal order or orders. In other words, the following opera-
tions for identifying a prefetch node can be applied to any
linked data structure even if it is not described by a tree
structure: (1) attach a new node to the linked data structure;
(2) traverse one node in a reverse traversal direction to a first
existing node (assuming one exists); (3) jump in the reverse
traversal direction to a second existing node via a reverse
prefetch link of the second existing node; and (4) traverse one
node in a forward traversal direction to the prefetch node.

FIG. 9 illustrates a doubly linked list or linear type linked
data structure. Each node in a doubly linked list except the
first and last nodes (nodes A and F in this example) has two
links—a forward link and a reverse link. A traversal order for

40

45

55

12

a doubly linked list is typically linear—for instance, A to B to
Cto Dto E to F or the reverse of this traversal order.

The systems and methods described herein can be imple-
mented in a machine such as a computer system in addition to
the specific physical devices described herein. FIG. 7 shows a
diagrammatic representation of one embodiment of a
machine in the exemplary form of a computer system 700
within which a set of instructions can execute for causing a
device to perform or execute any one or more of the aspects
and/or methodologies of the present disclosure. The compo-
nents in FIG. 7 are examples only and do not limit the scope
of'use or functionality of any hardware, software, embedded
logic component, or a combination of two or more such
components implementing particular embodiments.

Computer system 700 may include a processor 701, a
memory 703, and a storage 708 that communicate with each
other, and with other components, via a bus 740. The bus 740
may also link a display 732, one or more input devices 733
(which may, for example, include a keypad, a keyboard, a
mouse, a stylus, etc.), one or more output devices 734, one or
more storage devices 735, and various tangible storage media
736. All of these elements may interface directly or via one or
more interfaces or adaptors to the bus 740. For instance, the
various tangible storage media 736 can interface with the bus
740 via storage medium interface 726. Computer system 700
may have any suitable physical form, including but not lim-
ited to one or more integrated circuits (ICs), printed circuit
boards (PCBs), mobile handheld devices (such as mobile
telephones or PDAs), laptop or notebook computers, distrib-
uted computer systems, computing grids, or servers.

Processor(s) 701 (or central processing unit(s) (CPU(s)))
optionally contains a cache memory unit 702 for temporary
local storage of instructions, data, or computer addresses.
Processor(s) 701 are configured to assist in execution of com-
puter readable instructions. Computer system 700 may pro-
vide functionality as a result of the processor(s) 701 executing
software embodied in one or more tangible computer-read-
able storage media, such as memory 703, storage 708, storage
devices 735, and/or storage medium 736. The computer-read-
able media may store software that implements particular
embodiments, and processor(s) 701 may execute the soft-
ware. Memory 703 may read the software from one or more
other computer-readable media (such as mass storage
device(s) 735, 736) or from one or more other sources through
a suitable interface, such as network interface 720. The soft-
ware may cause processor(s) 701 to carry out one or more
processes or one or more steps of one or more processes
described orillustrated herein. Carrying out such processes or
steps may include defining data structures stored in memory
703 and modifying the data structures as directed by the
software.

The memory 703 may include various components (e.g.,
machine readable media) including, but not limited to, a
random access memory component (e.g., RAM 704) (e.g., a
static RAM “SRAM?”, a dynamic RAM “DRAM, etc.), a
read-only component (e.g., ROM 705), and any combinations
thereof. ROM 705 may act to communicate data and instruc-
tions unidirectionally to processor(s) 701, and RAM 704 may
act to communicate data and instructions bidirectionally with
processor(s) 701. ROM 705 and RAM 704 may include any
suitable tangible computer-readable media described below.
In one example, a basic input/output system 706 (BIOS),
including basic routines that help to transfer information
between elements within computer system 700, such as dur-
ing start-up, may be stored in the memory 703.

Fixed storage 708 is connected bidirectionally to process-
or(s) 701, optionally through storage control unit 707. Fixed

US 9,195,778 B2

13

storage 708 provides additional data storage capacity and
may also include any suitable tangible computer-readable
media described herein. Storage 708 may be used to store
operating system 709, EXECs 710 (executables), data 711,
API applications 712 (application programs), and the like.
Often, although not always, storage 708 is a secondary stor-
age medium (such as a hard disk) that is slower than primary
storage (e.g., memory 703). Storage 708 can also include an
optical disk drive, a solid-state memory device (e.g., flash-
based systems), or a combination of any of the above. Infor-
mation in storage 708 may, in appropriate cases, be incorpo-
rated as virtual memory in memory 703.

In one example, storage device(s) 735 may be removably
interfaced with computer system 700 (e.g., via an external
port connector (not shown)) via a storage device interface
725. Particularly, storage device(s) 735 and an associated
machine-readable medium may provide nonvolatile and/or
volatile storage of machine-readable instructions, data struc-
tures, program modules, and/or other data for the computer
system 700. In one example, software may reside, completely
or partially, within a machine-readable medium on storage
device(s) 735. Inanother example, software may reside, com-
pletely or partially, within processor(s) 701.

Bus 740 connects a wide variety of subsystems. Herein,
reference to a bus may encompass one or more digital signal
lines serving a common function, where appropriate. Bus 740
may be any of several types of bus structures including, but
not limited to, a memory bus, a memory controller, a periph-
eral bus, a local bus, and any combinations thereof, using any
of a variety of bus architectures. As an example and not by
way of limitation, such architectures include an Industry
Standard Architecture (ISA) bus, an Enhanced ISA (EISA)
bus, a Micro Channel Architecture (MCA) bus, a Video Elec-
tronics Standards Association local bus (VLB), a Peripheral
Component Interconnect (PCI) bus, a PCI-Express (PCI-X)
bus, an Accelerated Graphics Port (AGP) bus, HyperTrans-
port (HTX) bus, serial advanced technology attachment
(SATA) bus, and any combinations thereof.

Computer system 700 may also include an input device
733. In one example, a user of computer system 700 may
enter commands and/or other information into computer sys-
tem 700 via input device(s) 733. Examples of an input
device(s) 733 include, but are not limited to, an alpha-nu-
meric input device (e.g., a keyboard), a pointing device (e.g.,
a mouse or touchpad), a touchpad, a joystick, a gamepad, an
audio input device (e.g., a microphone, a voice response
system, etc.), an optical scanner, a video or still image capture
device (e.g., a camera), and any combinations thereof. Input
device(s) 733 may be interfaced to bus 740 via any of a variety
of input interfaces 723 (e.g., input interface 723) including,
but not limited to, serial, parallel, game port, USB,
FIREWIRE, THUNDERBOLT, or any combination of the
above.

In particular embodiments, when computer system 700 is
connected to network 730, computer system 700 may com-
municate with other devices, specifically mobile devices and
enterprise systems, connected to network 730. Communica-
tions to and from computer system 700 may be sent through
network interface 720. For example, network interface 720
may receive incoming communications (such as requests or
responses from other devices) in the form of one or more
packets (such as Internet Protocol (IP) packets) from network
730, and computer system 700 may store the incoming com-
munications in memory 703 for processing. Computer sys-
tem 700 may similarly store outgoing communications (such
asrequests or responses to other devices) in the form of one or
more packets in memory 703 and communicated to network

10

15

20

25

30

35

40

45

50

55

60

65

14

730 from network interface 720. Processor(s) 701 may access
these communication packets stored in memory 703 for pro-
cessing.

Examples of the network interface 720 include, but are not
limited to, a network interface card, a modem, and any com-
bination thereof. Examples of a network 730 or network
segment 730 include, but are not limited to, a wide area
network (WAN) (e.g., the Internet, an enterprise network), a
local area network (LAN) (e.g., a network associated with an
office, a building, a campus or other relatively small geo-
graphic space), a telephone network, a direct connection
between two computing devices, and any combinations
thereof. A network, such as network 730, may employ a wired
and/or a wireless mode of communication. In general, any
network topology may be used.

Information and data can be displayed through a display
732. Examples of a display 732 include, but are not limited to,
a liquid crystal display (LLCD), an organic liquid crystal dis-
play (OLED), acathode ray tube (CRT), a plasma display, and
any combinations thereof. The display 732 can interface to
the processor(s) 701, memory 703, and fixed storage 708, as
well as other devices, such as input device(s) 733, via the bus
740. The display 732 is linked to the bus 740 via a video
interface 722, and transport of data between the display 732
and the bus 740 can be controlled via the graphics control 721.

In addition to a display 732, computer system 700 may
include one or more other peripheral output devices 734
including, but not limited to, an audio speaker, a printer, and
any combinations thereof. Such peripheral output devices
may be connected to the bus 740 via an output interface 724.
Examples of an output interface 724 include, but are not
limited to, a serial port, a parallel connection, a USB port, a
FIREWIRE port, a THUNDERBOLT port, and any combi-
nations thereof.

In addition or as an alternative, computer system 700 may
provide functionality as a result of logic hardwired or other-
wise embodied in a circuit, which may operate in place of or
together with software to execute one or more processes or
one or more steps of one or more processes described or
illustrated herein. Reference to software in this disclosure
may encompass logic, and reference to logic may encompass
software. Moreover, reference to a computer-readable
medium may encompass a circuit (such as an IC) storing
software for execution, a circuit embodying logic for execu-
tion, or both, where appropriate. The present disclosure
encompasses any suitable combination of hardware, soft-
ware, or both.

Those of skill in the art would understand that information
and signals may be represented using any of a variety of
different technologies and techniques. For example, data,
instructions, commands, information, signals, bits, symbols,
and chips that may be referenced throughout the above
description may be represented by voltages, currents, elec-
tromagnetic waves, magnetic fields or particles, optical fields
or particles, or any combination thereof.

Those of skill would further appreciate that the various
illustrative logical blocks, modules, circuits, and algorithm
steps described in connection with the embodiments dis-
closed herein may be implemented as electronic hardware,
computer software, or combinations of both. To clearly illus-
trate this interchangeability of hardware and software, vari-
ous illustrative components, blocks, modules, circuits, and
steps have been described above generally in terms of their
functionality. Whether such functionality is implemented as
hardware or software depends upon the particular application
and design constraints imposed on the overall system. Skilled
artisans may implement the described functionality in vary-

US 9,195,778 B2

15

ing ways for each particular application, but such implemen-
tation decisions should not be interpreted as causing a depar-
ture from the scope of the present invention.

The various illustrative logical blocks, modules, and cir-
cuits described in connection with the embodiments dis-
closed herein may be implemented or performed with a gen-
eral purpose processor, a digital signal processor (DSP), an
application specific integrated circuit (ASIC), a field pro-
grammable gate array (FPGA) or other programmable logic
device, discrete gate or transistor logic, discrete hardware
components, or any combination thereof designed to perform
the functions described herein. A general purpose processor
may be a microprocessor, but in the alternative, the processor
may be any conventional processor, controller, microcontrol-
ler, or state machine. A processor may also be implemented as
a combination of computing devices, e.g., a combination of a
DSP and a microprocessor, a plurality of microprocessors,
one or more microprocessors in conjunction with a DSP core,
or any other such configuration.

The steps of amethod or algorithm described in connection
with the embodiments disclosed herein may be embodied
directly in hardware, in a software module executed by a
processor, or in a combination of the two. A software module
may reside in RAM memory, flash memory, ROM memory,
EPROM memory, EEPROM memory, registers, hard disk, a
removable disk, a CD-ROM, or any other form of storage
medium known in the art. An exemplary storage medium is
coupled to the processor such the processor can read infor-
mation from, and write information to, the storage medium.
In the alternative, the storage medium may be integral to the
processor. The processor and the storage medium may reside
in an ASIC. The ASIC may reside in a user terminal. In the
alternative, the processor and the storage medium may reside
as discrete components in a user terminal.

The previous description of the disclosed embodiments is
provided to enable any person skilled in the art to make or use
the present invention. Various modifications to these embodi-
ments will be readily apparent to those skilled in the art, and
the generic principles defined herein may be applied to other
embodiments without departing from the spirit or scope of the
invention. Thus, the present invention is not intended to be
limited to the embodiments shown herein but is to be
accorded the widest scope consistent with the principles and
novel features disclosed herein.

What is claimed is:
1. A linked data structure creation and traversal system
comprising:
a processor;
a node creation module that attaches a new node to the
linked data structure;
a traversal module that:
traverses one node in a reverse traversal order from the
new node to a first existing node;
jumps to a second existing node, the second existing
node located via a first reverse prefetch link of the first
existing node;
traverses one node in a forward traversal order from the
second existing node to a prefetch node;
a write module that writes:
a second reverse prefetch link, indicating a location of
the prefetch node, to the new node; and
a forward prefetch link, indicating a location of the new
node, to the prefetch node
wherein a prefetch distance, N, separating the first existing
node from the second existing node, is a function of an
average time required for the traversal module to

10

15

20

25

30

35

40

45

50

55

60

65

16

traverse N nodes, and wherein the node creation module,
the traversal module, and write module are executed by
the processor.

2.Thelinked data structure creation and traversal system of
claim 1, wherein the linked data structure is a tree type linked
data structure.

3.Thelinked data structure creation and traversal system of
claim 2, wherein the tree type linked data structure is a docu-
ment object model (DOM) tree.

4.Thelinked data structure creation and traversal system of
claim 1, wherein the linked data structure is a doubly linked
list type linked data structure.

5.Thelinked data structure creation and traversal system of
claim 1, wherein N is a function of an average time required
to prefetch node data from memory into cache of a processor.

6. The linked data structure creation and traversal system of
claim 1, wherein the traversal module traverses the linked
data structure by:

reading first node data from the cache of a processor, the

first node data being data from the prefetch node;
reading the forward prefetch link of the prefetch node;
prefetching second node data from the memory into the
cache of the processor before the processor is ready to
read the second node data, the second node data being
data from a the new node; and
reading the second node data from the cache of the proces-
SOr.

7.Thelinked data structure creation and traversal system of
claim 1, wherein the node creation module is configured to
remove a node from the linked data structure.

8. The linked data structure creation and traversal system of
claim 7, wherein the node creation module is further config-
ured to add a node to the linked data structure after removing
a node from the linked data structure.

9. A method of assigning prefetch traversal links to nodes
in a linked data structure, the method comprising:

determining a prefetch node distance N;

wherein the prefetch node distance N is a function of an

average time rewired to traverse N nodes

attach a new node to the linked data structure;

traversing the linked data structure one node in a reverse

traversal order to a first existing node;

jumping to a second existing node via a reverse prefetch

link of the first existing node;

traversing the linked data structure one node in a forward

traversal order to a prefetch node;

assigning a first reverse prefetch link, referencing the

prefetch node, to the new node; and

assigning a first forward prefetch link, referencing the new

node, to the prefetch node.

10. The method of claim 9, further comprising:

adding a second new node to the linked data structure; and

determining that the second new node does not have a

reverse traversal link.

11. The method of claim 9, further comprising:

adding a second new node to the linked data structure;

traversing the linked data structure one node in the reverse

traversal order to a third existing node; and

determining that the third existing node does not have a

reverse prefetch link.

12. The method of claim 11, further comprising:

traversing N nodes in the reverse traversal order to a second

prefetch node; and

assigning a second reverse prefetch link, referencing the

second prefetch node, to the second new node; and
assigning a second forward prefetch link, referencing the
second new node, to the second prefetch node.

US 9,195,778 B2

17

13. The method of claim 9, wherein the prefetch node
distance N is a function of node traversal latency.

14. The method of claim 9, wherein the prefetch node
distance N is further a function of an average time required to
prefetch node data from memory into cache.

15. The method of claim 9, wherein the linked data struc-
ture is a tree type linked data structure.

16. A non-transitory, tangible computer readable storage
medium, encoded with processor readable instructions to per-
form a method for assigning prefetch traversal links to nodes
in a linked data structure, the method comprising:

determining a prefetch node distance N;

wherein N is calculated based on an average time required

to traverse N nodes

attach a new node to the linked data structure;

traversing the linked data structure one node in a reverse

traversal order to a first existing node;

jumping to a second existing node via a reverse prefetch

link of the first existing node;

traversing the linked data structure one node in a forward

traversal order to a prefetch node;

assigning a first reverse prefetch link, referencing the

prefetch node, to the new node; and

assigning a first forward prefetch link, referencing the new

node, to the prefetch node.

17. The non-transitory, tangible computer readable storage
medium of claim 16, further comprising traversing the linked
data structure using the prefetch link of the prefetch node to

15

20

25

18

prefetch data of the prefetch node into a cache of a processor
while the processor is processing data for another node.

18. The non-transitory, tangible computer readable storage
medium of claim 17, wherein the second existing node is N
nodes in a reverse traversal direction from the first existing
node.

19. A system for assigning prefetch links to nodes in a
linked data structure in order to enhance traversal of the
linked data structure, the system comprising:

a node creation module that adds a new node to the linked

data structure;

a means for determining a prefetch node distance N
wherein the prefetch node distance N is a function of an
average time required to traverse N nodes;

a means for attaching a new node to the linked data struc-
ture;

a means for traversing the linked data structure one node in
a reverse traversal order to a first existing node;

ameans for jumping to a second existing node via a reverse
prefetch link of the first existing node;

a means for traversing the linked data structure one node in
a forward traversal order to a prefetch node;

a means for assigning a first reverse prefetch link, refer-
encing the prefetch node, to the new node; and

a means for assigning a first forward prefetch link, refer-
encing the new node, to the prefetch node.

20. The system of claim 19, wherein the linked data struc-

ture is a tree type linked data structure.

#* #* #* #* #*

